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Abstract 
Many scientific and engineering applications require a detailed analysis of complex systems with strongly coupled 
fl uid flow, thermal ener gy transfer, mass transfer and non-equilibrium chemical reactions. Examples include combus- 
tion research for transportation and energy conversion system and the modeling of chemical vapor deposition (CVD) 
processing for advanced semiconductor materials. Here we describe the performance of a newly developed applica- 
tion code, SALSA, designed to simulate these complex flows on large-scale parallel machines such as the Intel Para- 
gon. SALSA uses 3D unstructured finite element methods to model geometrically complex flow systems. Fully 
implicit time integration, multicomponent mass transport and general gas phase and surface species non-equilibrium 
chemical kinetics are employed. The implicit nature of the algorithm requires the solution of a coupled set of nonlin- 
ear PDEs on unstructured computational domains, a difficult task on the distributed memory architectures of modern 
large-scale parallel machines. To address these issues we have designed SALSA around general kernel routines. 
These include automated problem partitioning algorithms, efficient unstructured message passing communication, a 
distributed sparse-block matrix representation of the fully summed global finite element equations (as opposed to less 
efficient clement-by element techniques) and a parallel preconditioned Krylov iterative solver library. Using these 
techniques we have obtained over 65 Gflop/s on a minimal-flop solution of a 3D chemically reacting flow CVD prob- 
lem for Silicon Carbide (SiC) deposition. This represents 46% of the peak performance of our 1904 node Intel Para- 
gon, an outstanding computational rate in view of the required unstructured data communication and sparse matrix 
computations. 

1. Introduction 

Current state-of-thc -art chemically reacting flow codes use either complex fluid dynamic with simple 
chemical reaction rriechanisms or complex chemical kinetics with simple fluid mechanics models. This 
unfortunate dichofor uy iii resolution is due to the tremendous computational resources needed to solve 
large, real-world c:lii:rtlically reacting flow problems in complex flow geometries. To date, the solution of 
3D problems with curnplex reaction chemistry and flow geometries has been impossible. 

As an important exanipie, designers of CVD reactors need detailed information on the complex flow struc- 
ture, temperature disiribution, chemical species distribution and uniformity of deposition rates. In a typical 
reaction mechanism there can be over thirty important chemical species undergoing more than fifty reac- 
tions. Consequently the computer analysis of these systems in the past has been limited to idealized 1D and 
2D geometries with a moderate number of chemical species. Our results demonstrate that large parallel 
machines can provide the performance and memory necessary to solve chemically reacting flow problems 
in 3D with an equal emphasis on flow and reaction kinetics. However, achieving this performance requires 
addressing specific difficulties associated with unstructured FE implementations on distributed memory 
computers. 

One such difficulty is determining how the problem domain should be decomposed and mapped to the 
individual processors !'or maximum efficiency. We abstract this to a graph partitioning problem and have 
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developed a number of new and effective algorithms to address different needs. Other important perfor- 
mance issues result directly from choices made in implementing the E method. In particular, the choice of 
efficient data structures for the parallel iterative solvers is critical to overall performance. The ideal struc- 
ture combines efficient memory usage with high computational throughput and allows straightforward 
implementation of robust preconditioners. These issues have been addressed in SALSA, enabling unprece- 
dented performance in the solution of implicit unstructured FE problems. Through state-of-the-art algo- 
rithms and efficient solution methods, problems of real importance to the semiconductor industry can now 
be solved. 

2. Numerical Methods 

SALSA computes the solution of the conservation equation for momentum, total mass, thermal energy, 
and individual gas and surface phase chemical species for low Mach number flows. As Table 1 shows, 
these equations form a complex set of coupled, nonlinear PDEs. Constituative relations for the stress ten- 
sor, T , heat flux vector, q , and species mass fluxes, j,, are based on non-equilibrium statistical mechani- 
cal theory of multicomponent, dilute polyatomic gases. Necessary transport properties, diffusion 
coefficients, kinetic rate constants and diffusion velocities are obtained from the CHEMKIN [4] subroutine 
library developed at Sandia. This library provides a rigorous treatment of dilute-gas multicomponent trans- 
port, including the effects of thermal diffusion. Chemical reactions occurring in the gas phase and on sur- 
faces are also obtained through CHEMKIN. 

Momentum 

Total Mass 

Thermal 
Energy 

Species Mass 
Fraction for 
Species k 

' M + V * ( p u u ) - V * T - p g  at = 0 

aP+V.(pu) at =-0 

r -l 

+ V*puYk = -V*jk+ Wkbk,  k = 1,2, ..., N , -  1 
a (p y k )  

at 
~ 

Table 1: Governing Conservation Equations 

The continuous problem defined by the governing conservation equations is approximated by a Galerkin 
finite element method for the spatial representation coupled with first and second order dynamically con- 
trolled time stepping methods. At each time step an implicit solution of the nonlinear PDEs is accom- 
plished by a back-tracking, damped Newton method. The resulting linear systems are solved iteratively 
using preconditioned Krylov techniques. The nonlinear Jacobian entries are determined by both analytical 
construction and numerical differentiation. The strong coupling between chemical species at a particular 
J33 node and the induced nonzero block structure motivate the use of the sparse block representation dis- 
cussed later. Since the element integrations and chemical kinetics mechanisms depend only on local geom- 
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etry and thermodynamic state, they can be computed independently on each processor, yielding nearly 
perfect parallel scaling. 

3.1 Sparse Matrix Data Structures 

Typical FE applications store the sparse coefficient matrix in one of two general ways - in an element-by- 
element (EBE) scheme or as fully summed equations. In the EBE case [2], each element’s interaction 
matrix is stored separately and is not explicitly summed with contributions from neighboring elements. 
Rather, all matrix-vector operations are performed with elemental matrices where the global vector result 
is only obtained after summing over all elements. While this scheme simplifies parallel implementation, it 
substantially increases the required storage and flops. For example, in the case of 3D linear hexahedral ele- 
rnents, more than three times as many floating point computations are required with a corresponding 
increase in execution time. Although the larger block sizes associated with the EBE approach may yield an 
increase in Aop rate, this is unlikely to compensate for the increased operation count. 

For this reason we have chosen to store fully summed equations in a sparse matrix format which allows for 
$ 1  mtriimal flop solution. This approach sums the elemental coefficient matrices at the beginning of the lin- 
ear : d v e  rather than sunlining each matrix vector product and hence eliminates redundant computations. 
Further, it allows the design of more complex and robust preconditioning methods. We have implemented 
thew iully summed equalioris using a variable block row (VBR) format [3]. In this approach the matrix has 
n q ) u s c  block structure dw to the coupling of the physics at a FE node. These blocks are stored contigu- 
oilsly ill memory so that thc indirect addressing of other sparse matrix formats is replaced with directly 
addressed dense matrix vector multiplications, e.g. those in level 2 BLAS. These multiplications can be 
vcry dficient on CPUs which use vectorization and/or a cache memory hierarchy. In SALSA we have used 
spectal assembly coded routines supplied by Intel to enhance performance on problems with small block 
aize:, These routines sushin a computational rate in excess of 40 Mflop/s on an individual Intel Paragon 
processor for the S i c  - CVD problem in which the blocks are of size 24x24. 

’3.2 Krylov Iterative Solvers 

The parallel Krylov algorithms implemented in SALSA include CG, CGS, GMRES, CGSTAB and 
TFQMR [6]. The available preconditioners are row sum and block Jacobi scaling, block Jacobi precondi- 
tioning and Neumann series and least-squares polynomial methods. (A domain decomposition precondi- 
iiiorm itsing block ILU is under development.) The main kernels of the iterative methods are matrix-vector 
products, DAXPY type operations and vector inner products. The key to performance in these solvers is 
the efficiency of the matrix-vector multiply kernel, where interprocessor communication time must be 
minimized. 

In forming the sparse matrix and vectors, each processor is assigned a set of unknowns corresponding to a 
set of rows in the sparse matrix and associated vectors [7]. This set is further subdivided into border and 
internul unknowns. Border unknowns are those which must communicate with neighboring processors to 
complete the matrix-vector multiply; the remaining unknowns on a processor are designated as internal. 
Those unknowns required for a processor’s computations but assigned to a neighboring processor are des- 
ignated external. Calculations on the internal nodes require no updated values, so they can proceed simul- 
taneously with communication. Once a specific partition and assignment of the unknowns to internal, 
border and external sets has been defined, a distributed VBR sparse matrix storage scheme is constructed. 

3.3 Partitioning 

Much of the algorithm dcvclopment for the parallel solution of PDE systems has focused on problems on 
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Table 

476 

2: 

952 1904 

regular domains, 'The partitioning of the resulting structured grids can be accomplished easily using simple 
heuristics which minimize the perimeter-to-area (or surface -to-volume) ratios of the subdomains. In addi- 
tion, these subdomains can then be mapped directly to hypercube or mesh architecture parallel computers 
so that only nearest neighbor (and hence contention free) communication is required. In contrast, the parti- 
tioning and mapping problem for unstructured meshes is much more difficult. Indeed, the determination of 
a partition which minimizes communication between balanced sets is known to be an NP-hard problem. 
Furthermore, an unstructured mesh cannot generally be mapped with only nearest neighbor communica- 
tion on a hypercube or mesh architecture. The resulting contention for interprocessor communication 
channels make near-optimal mappings even more important. 

#Nonzeros 

Matrix Fill (sec.)  

The partitions used to produce the results presented in Section 4 were generated using Chaco [4], a general 
graph (or mesh) partitioning code which was developed in conjunction with SALSA and which supports a 
variety of new and established graph partitioning heuristics. These include spectral techniques, geometric 
methods, multilevel algorithms and the Kernighan-Lin method. All of these approaches may be applied in 
bisection, quadrisection or octasection mode to recursively partition general graphs for mapping onto 
hypercubes and mesh architectures of arbitrary size. The input graphs describing the application's commu- 
nication pattern may be edge or vertex weighted, allowing accurate modeling of inhomogeneous computa- 
tion and communication loads. The partitions generated by Chaco were processed further to increase the 
number of internal nodes (enhancing communicatiodcomputation overlap), and to improve the mapping 
of regions onto the Paragon architecture. Using these techniques, a problem mapping was constructed with 
low communication volume, good load balance, few message start-ups and a small amount of congestion, 
which also facilitated the overlapping of communication and computation. 

6.3 x 10' 1.3 io9 2.5 io9 

41.3 42.1 40.2 

4. Results 

Percent of Peak* 

We have used SALSA to investigate a problem of current interest in the CVD community - the deposition 
of Sic.  The reaction mechanism for this problem has 19 species and over 40 gas phase reactions, a simpli- 
fied 1D simulation of which has recently appeared in the literature [I]. In our simulation we use a false 
transient time-stepping algorithm to solve for the three fluid velocities, pressure, temperature and 19 chem- 
ical species (resulting in 24 total unknowns) per FE node. The Reynolds number based on the inner disk 
diameter is 120 and the characteristic temperature difference between the heated disk and the inlet gasses 
is 700OK. We simulated both a horizontal reactor and a vertical disk reactor depicted in Figure 1. Table 2 
contains results for the horizontal reactor configuration with 176,000 FE nodes. This problem has 4.2 mil- 
lion unknowns and 2.5 billion nonzeros in the global coefficient matrix. 

46% 46% 46% 

I #Unknowns I 1.1 x lo6 I 2.1 x lo6 I 4 . 2 ~  lo6 I 

I Gflops I 16.3 I 32.8 I 65.7 I 

*Based on 15 Mflopslnode. 

FE nodes 
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We begin our discussion by considering thc overall scaling of the two principal kernels, the matrix fill rou- 
tine and the linear solver. For these results we select a representative solver (CGS-Conjugate Gradient 
Squared) and several least-squares prcconditioners. The results in Table 2 correspond to three reactor mod- 
els in which the number of unknowns per processor has been held constant and the number of processors 
has been scaled. We do not present a flop rate for the fill portion of the application since it involves a 
library of chemical kinetics software with an undocumented flop count. However, since each processor 
computes values for the nodes it owns, this operation is perfectly parallel. The linear solver results in the 
table indicate almost perfect scaling. They sustain nearly 50% of the peak performance of the is60 despite 
the unstructured communication and sparse matrix computations, achieving over 65 Gflop/s on 1904 pro- 
cessors. The partitions for these problems were generated using a multilevel Kernighan-Lin partitioning 
algorithm with post-processing as discussed in Section 3.3. We have observed that lower quality methods 
like inertial partitioning reduce performance by up to 20%. 

Gflops 

Percent of 
Peak* 

In Table 3 we present the performance of the solvers using two basic preconditioners, the block Jacobi 
(Blk-Jac) arid an “n” term least squares polynomial. The polynomial preconditioners have an overall 
higher Gflop rate than the block Jacobi preconditioners because they rely more heavily on the efficient 
VBK matrix vector multiplication. Although high flop rates do not always mean faster solutions [6],  our 
studies of performance and convergence indicate that the simple polynomial preconditioners are quite 
effective wlicn combined with appropriate matrix scaling. They are straightforward to implement and per- 
form well 011 the transport part (flow) of the time dependent PDE system. However, we have also observed 
that the block Jacobi preconditioner has very desirable properties with respect to the strongly coupled local 
chemistry portion of the PDEs. 

Preconditioner 

Blk-Jac LS 1 LS5 LS9 

50 55 61.3 65.7 

35% 39% 43% 46% 

Table 3: Performance of Preconditioners on Linear Systems: Horizontal reactor 175,000 FE nodes 

In Table 4 we give results for a representative Newton iteration at 0.3 microseconds into the solution of 
Sic deposition in the vertical CVD reactor. This problem contains 3.8 million unknowns and 2.4 billion 
nonzeros in the Jacobian matrix. At this point in the simulation the solution of the linear system takes more 
than 90%) of the total time which is representative of the proportion of fill-time to solve-time of difficult 
time-steps in the simulation, validating our emphasis on the solution routines. 

We present a graphical display of a representative load balance of the vertical reactor geometry in Figure 1.  
In this figure the varying colors indicate the distinct processor assignments. Interprocessor boundaries, 
across which communication is required, are shown in red. A representative plot of flow streamlines in the 
reactor along with a temperature distribution on the center plane is shown in Figure 2. The steamlines iden- 
tify recirculating flow which, coupled with the reaction chemistry, may reveal undesirable deposition pat- 
terns. This is precisely the kind of design flaw that we can now address with SALSA. 

5 



Matrix Fill Iterations lotal Time 
(sec.) Solver (SCC.) 

378.0 414.7 

Table 4: Time to solution for a Newton Step, Vertical CVD Keactor - CGS Solver 

5. Conclusions 

We have developed a parallel code to simulate chemically reacting flows on complex _eeometries. with the 
specific goal of modelling chemical vapor deposition reactors. The code solves complex 3D flow, heat 
transfer. mass fmsfer  *and nonequilibrium chemical reaction equations on unstructured _grids. Through a 
combination 01 innovativc algorithms and data structures. this code has obtained 65 Gflopds and an effi- 
ciency of nearly 50% OI\ the Intel Paragon. while simulating a problem of great iritercst to Sandia and the 
semiconductor iadustr y 

Figure 1. L,o;id t)al;i[\( c 01 vel tical CVD 
reactor for 28 I ~ ~ o c r ~ w ~ ~  constructed with 
Chaco usin2 spectral quahisection and 
KL refinemme, 

Figure 2. View of streamlines showing detrimental 
recirculation and a temperature profile in a vertical 
CVD reactor. 
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